Securing medical imaging poses a significant challenge in preserving the confidentiality of healthcare data. Numerous research efforts have focused on fortifying these images, with encryption emerging as a primary solution for maintaining data integrity without compromising confidentiality. However, applying conventional encryption techniques directly to e-health data encounters hurdles, including limitations in data size, redundancy, and capacity, particularly in open-channel patient data transmissions. As a result, the unique characteristics of images, marked by their risk of data loss and the need for confidentiality, make preserving the privacy of data contents a complex task. This underscores the pressing need for innovative approaches to ensure the security and confidentiality of sensitive healthcare information within medical images. The proposed algorithm outperforms referenced algorithms in both image fidelity and steganographic capacity across diverse medical imaging modalities. It consistently achieves higher Peak Signal-to-Noise Ratio (PSNR) values, indicating superior image fidelity, reduced noise, and preserved signal quality in CT, MRI, ultrasound, and X-ray modalities. The experimental results demonstrate a considerable improvement in both the Peak Signal-to-Noise Ratio (PSNR) and maximum embedding capacity. Specifically, the average PSNR value for the X-ray modality reached a notable 73 dB, signifying superior image quality. Moreover, the CT modality exhibited the highest maximum embedding capacity, measured at 0.52, showcasing its efficiency in accommodating data within the images. Moreover, the algorithm consistently offers increased steganographic data hiding capacity in these images without perceptibly degrading their quality or integrity.