With the presence of a large number of inversion algorithms for inverse heat transfer problems (IHTPs) and non-IHTPs, a need for review to have a holistic view is seen. An exhaustive literature review, with the motivation of selecting the inversion technique best fit for a given problem, was made for a general inverse problem. For ill-posedness, a classification of available regularization algorithms namely Tikhonov’s regularization, Bayesian regularization, mollification method, Beck’s sequential approach and Alifanov’s iterative approach, has been provided. Inversion methods like singular value decomposition, truncated singular value decomposition, Tikhonov regularization and total variation regularization are explained. Optimization methods namely steepest descent method, conjugate gradient method, Newton method, Levenberg–Marquardt method, Lagrange method, adjoint method, function specification method, genetic algorithm, differential evolution and particle swarm optimization (PSO) are reviewed. Further, a technique based on neural networks is studied, and wavelet methods like shrinking and wavelet vaguelette decomposition are reviewed. Associated literature has also been listed, highlighting the gaps. The usability of various algorithms in IHTP, starting from the golden section search method, for retrieval of a single parameter, to the regularized versions of the inversion technique, for retrieval of multiple parameters with uncertainty, demonstrates real-life applications to fins in IHTP. An inversion algorithm capable to handle every kind of nonlinearity is sought in literature, whose absence raises the research question, “Is there a technique that works globally for every inverse problem?”, is asked prior to, “What if the available techniques were not utilized to an extent that they should?” is posed. In lieu of this gap, a general comparative framework is developed, such that an efficient technique is selected, based on the total minimum error, which can be used in any field of interest.