Ultrashort pulsed (USP) laser burst ablation has attracted numerous interests for its great potential in enhancing ablation efficiency and reducing the heat-affected zone. However, little attention has been paid to the influence of burst ablation on the processed surface quality. To fill this research gap, the present study conducts a comprehensive investigation on the surface processing of stainless steel using ultrashort pulsed laser burst ablation. Systematic experiments have been carried out to investigate influences of pulse number per burst (PpB), pulse fluence, and burst overlap ratio on surface quality and ablation efficiency. A two-dimensional model has been developed to unveil the fundamental thermodynamic process and evolution of ablation and melting in material during USP laser burst ablation. Compared to single-pulse ablation, the optimum ablation efficiency decreases with increasing PpB by less than 30% in burst ablation. Despite reduced ablation efficiency, burst-mode ablation can generate much better surface quality, achieving an ultrasmooth surface with an Sa roughness as low as 0.13 μm. Burst ablation generates distinctive surface structures compared to single-pulse ablation, and their formation mechanisms are scrutinized. The thickness of the surface melting layer is unveiled to determine surface morphology. Based on transmission electron microscopy (TEM) analysis and numerical simulation, a melting layer thickness between 100 and 320 nm is found to result in smooth surfaces. This work highlights the advantage of burst-mode ablation in achieving ultrasmooth surfaces on stainless steel and unveils the fundamental mechanisms of surface structures formation in USP laser burst ablation.
Read full abstract