It is well known that the cathodic protection of structures in seawater is accompanied by the formation of calcareous deposits on them. In current study, we consider the physicochemical modelling of the formation of the deposit composition against cathode current density in seawater. The reliability of the model representations is confirmed by direct experiments. The work also studied the protective properties of the deposits with a different composition for low-alloy steels in natural sea water. It has been shown that the deposits of pure Mg(OH)2and the deposits of CaCO3+ Mg(OH)2had better protective ability against corrosion than the deposits of pure CaCO3. However, the deposits of Mg(OH)2dissolved faster than the deposits of CaCO3and CaCO3+ Mg(OH)2. Theoretical concepts and experiments on the laws governing the formation of the deposits and their protective properties are in complete agreement with each other. This allows to use the obtained patterns in the cathodic protection of structures in sea water using solar panels, forming standard deviations with predetermined protective properties in the daytime.
Read full abstract