A calcareous deposit is a by-product of the cathodic polarization in seawater environments. This study presents the results of evaluating the anticorrosion and anti-macro-biofouling effectiveness of a calcareous deposit layer on the surface of the cathodically polarized AH36 structural steel in tropical seawater. The polarization is induced with initial current densities at which the calcareous deposit layer formed with both aragonite and brucite for 12 months continuously. The protective properties of the layer were compared with those of the passive layer from corrosion products under the same environmental conditions. The macro-biofouling in the tropical seawater is observed in the closed and open surfaces of the steel. The comparison of the anticorrosion property shows that, to some degree, the calcareous deposit layer contributes to surface passivation, as in the case of the corrosion product layer. In addition, the composition of the brucite and aragonite in the calcareous layer in the study plays a role as a macro-biofouling growth-limiting factor.
Read full abstract