Aimed at improving the production efficiency of tetrahedron-like pervious frames for the river revetment, self-compacting steel fiber reinforced concrete (SFRC) was applied to strengthen the tensile resistance of concrete to remove conventional steel bars used as reinforcement. The workability and mechanical properties of self-compacting SFRC were experimentally studied with the volume fraction of steel fiber changed from 0.4% to 1.2%, and the rational volume fraction of 0.8% was determined for producing the pervious frames. Based on the flow-induced orientation of the steel fibers in the fresh mix, the casting process of self-compacting SFRC was optimal from one inclined rod to other two inclined rods and the horizontal rods of the pervious frame. The loading capacities of pervious frames during lifting and stacking were respectively detected by the simulation tests on the testing machine, which ensure the safety of pervious frames lifted six layers together and stacked for nineteen layers. By testing groups of pervious frames throwed in and then salvaged from the river, the quality of pervious frames without any damage was observed. Finally, the pervious frames were successfully applied in an engineering project for the river revetment.