Steel plate shear walls require retrofitting due to factors such as corrosion, long–term loading and functional changes. In an effort to modernise the technology used for strengthening and retrofitting steel plate shear walls, fibre–reinforced polymer (FRP) plates with additional stiffeners are employed to enhance the shear capacity of steel structures. In this study, the static properties of steel plates reinforced with these stiffened FRP plates were experimentally investigated. The application of this strengthening methodology substantially enhanced the out–of–plane stability, shear stiffness and bearing capacity of the plates, while also reducing fatigue damage. Equations for estimating the buckling and ultimate load of steel plates reinforced with stiffened FRP plates have been derived, enabling predictions of their practical performance. Finite element models incorporating the potential failure of epoxy at the FRP–steel interface were developed for further analysis. A numerical study was performed to investigate the optimal thickness of the FRP stiffener. The analysis revealed that stiffener thicknesses exceeding 6 mm did not significantly contribute to the enhancement of the load–bearing capacity or to the prevention of debonding. When the FRP rib thickness exceeds 6 mm, the economy was poor. The aforementioned findings are of considerable engineering importance, especially in the context of improving fatigue properties and shear load–bearing capacity of thin steel plates.