As underground engineering extends into the western and deeper regions of China, more and more Luohe Formation sandstone layers will be encountered, which have weak cementation and high water content. It is a significant challenge to apply the open TBM, and the support system is crucial in determining whether TBM can excavate quickly and safely. Therefore, in order to optimize the support scheme, this paper analyzes the pore structure and porosity through CT scanning, the results indicate that the volume percentage of pores ≥34 μm is 2.3% and 1.5%, respectively, the large pore apertures are predominant, the surrounding rock has strong permeability, and there is a high risk of rock burst and roof collapse accidents, hence requiring reinforced support measures. On this basis, numerical simulations were conducted to evaluate the support effectiveness. The results show that replacing the “bolt + mesh” with a “bolt + cable + mesh + steel belt”, and replacing the top three bolts with 7.3 m anchor cables, can better control the deformation and provide sufficient thrust force for the TBM, ensuring excavation speed. After the implementation of this scheme at the Kekegai coal mine in Shaanxi, China, the TBM excavation speed increased by 70%, from the previous 10 m/day to 17 m/d, significantly reducing the project duration and construction costs.