Steam reforming of methane is a candidate process for converting concentrated high-temperature solar heat to chemical fuels because it is a high-temperature, highly endothermic process. We developed a tubular reformer system using novel double-walled reactor tubes with molten-salt thermal storage for solar reforming to produce hydrogen or synthetic gas (CO + H2) from a gas mixture of methane and steam using concentrated solar radiation as an energy source. The high heat capacity and large latent heat (heat of solidification) of the molten salt circumvents rapid temperature changes in the reactor tubes at high temperatures under fluctuating insolation. In this paper, we focused on under intermittent heating–cooling mode, the steam reforming performance of double-walled reactor tubes with Na2CO3/MgO composite thermal storage in comparison to pure Na2CO3 thermal storage. A heating mode using an electric furnace simulates reactor startup in the morning and reheating of the reactor by concentrated solar radiation after brief periods of cloud passage. The intermittent heating–cooling mode simulates fluctuating incident solar radiation during cyclic short-term cloud passage. The temperature variations of the catalyst and storage material, methane conversion, and higher heating value power of the reformed gas were examined for the double-walled reactor tubes and a single- wall reactor tube without thermal storage.
Read full abstract