Training of viewing an altered-reality environment dichoptically has been found to reactivate human adult ocular dominance plasticity, allowing improvement of vision for amblyopia. One suspected mechanism for this training effect is ocular dominance rebalancing through interocular disinhibition. Here, we investigated whether the training modulated the neural responses reflecting interocular inhibition. Thirteen patients with amblyopia and 11 healthy controls participated in this study. Before and after six daily altered-reality training sessions, participants watched flickering video stimuli with their steady-state visually evoked potential (SSVEP) signals recorded simultaneously. We assessed the amplitude of SSVEP response at intermodulation frequencies, which was a potential neural indicator of interocular suppression. The results showed that training weakened the intermodulation response only in the amblyopic group, which was in agreement with the hypothesis that the training reduced interocular suppression specific to amblyopia. Moreover, even one month after the training ended, we could still observe this neural training effect. These findings provide preliminary neural evidence in support of the disinhibition account for treating amblyopia. We also explain these results with the ocular opponency model, which, to our knowledge, is the first time for this binocular rivalry model to be used in explaining long-term ocular dominance plasticity.
Read full abstract