AbstractExfoliated polypropylene/layered silicate nanocomposites and chopped glass fiber reinforced composites were prepared by a melt compounding process using maleic anhydride modified polypropylene (PP-g-MAH). The effect of fillers on morphological and rheological properties in melt mixing of polypropylene matrix with compatibilizer was investigated and compared with various measurements. It was observed that polypropylene/layered silicate nanocomposites exhibited remarkable reinforcement compared with the conventional composites filled with glass fibers which were dispersed at micrometer scale. The nanocomposites had larger storage modulus at low frequency region and outstanding strain hardening behavior than those of pure polypropylene or glass fiber reinforced composites. It was shown that glass fiber reinforced composites had lower elastic properties and steady state elongational viscosities than pure polypropylene melt. Contrary to glass fiber reinforced composites, it was confirmed that 3-dimensional network structure due to strong intermolecular bonding between polypropylene matrix and layered silicates affected particular rheological properties of nanocomposites.
Read full abstract