In this paper, we are concerned with the global existence and stability of a steady transonic conic shock wave for the symmetrically perturbed supersonic flow past an infinitely long conic body. The flow is assumed to be polytropic, isentropic and described by a steady potential equation. Theoretically, as indicated in [R. Courant, K.O. Friedrichs, Supersonic Flow and Shock Waves, Interscience Publishers, Inc., New York, 1948], it follows from the Rankine–Hugoniot conditions and the entropy condition that there will appear a weak shock or a strong shock attached at the vertex of the sharp cone in terms of the different pressure states at infinity behind the shock surface, which correspond to the supersonic shock and the transonic shock respectively. In the references [Shuxing Chen, Zhouping Xin, Huicheng Yin, Global shock wave for the supersonic flow past a perturbed cone, Comm. Math. Phys. 228 (2002) 47–84; Dacheng Cui, Huicheng Yin, Global conic shock wave for the steady supersonic flow past a cone: Polytropic case, preprint, 2006; Dacheng Cui, Huicheng Yin, Global conic shock wave for the steady supersonic flow past a cone: Isothermal case, Pacific J. Math. 233 (2) (2007) 257–289] and [Zhouping Xin, Huicheng Yin, Global multidimensional shock wave for the steady supersonic flow past a three-dimensional curved cone, Anal. Appl. 4 (2) (2006) 101–132], the authors have established the global existence and stability of a supersonic shock for the perturbed hypersonic incoming flow past a sharp cone when the pressure at infinity is appropriately smaller than that of the incoming flow. At present, for the supersonic symmetric incoming flow, we will study the global transonic shock problem when the pressure at infinity is appropriately large.
Read full abstract