Ambient pressure and gravity are important parameters in buoyant flow that governs upward flame spread process. Based on the concept of pressure modelling, this experimental study investigates extinction and upward flame spread process of a thermally-thin solid fuel in different pressure and oxygen conditions. Experiments are performed in a combustion chamber in air at different pressures (ranging from 10 kPa to 100 kPa) and different oxygen molar fraction environment (9–21 %). As pressure increases, different burning behaviors are observed: no ignition, partial flame spread, steady flame spread, and accelerating flame spread. Similar trend is observed as the ambient oxygen molar fraction increases. In partial pressure conditions (e.g., 25–50 kPa), flames exhibit characteristics that are typically observed in micro- and partial gravity environments: blue and dim. Flame spread rate and sample burnt length are deduced and compared between different pressure and oxygen levels. Overall, the burning intensity and the flame spread rate decrease with the decrease in ambient pressure and oxygen. The decrease in flame spread rate at reduced pressure is attributed to increase in flame standoff distance and decrease in convective heat transfer to the solid, whereas the decrease in flame spread rate in reduced oxygen molar fraction environment is attributed to decrease in flame temperature. Lastly, current and previous studies performed at different ambient environments are correlated using the concept of flame standoff distance (δf), which is estimated using the theoretical viscous boundary layer thickness (δv). It was found that approximating δf∼δvfor forced flow and δf∼1/3δv for natural flow can predict the flame spread rate reasonably well for data obtained in micro-, partial, and normal gravities, for a wide range of environmental conditions away from extinction limits.
Read full abstract