The transboundary region along the Heilongjiang River, encompassing the Russian Far East and Northeast China, possesses abundant agricultural natural resources crucial for global food security. In the face of the challenge of disruptions in the global food supply chain, the precise monitoring and exploitation of agricultural resources in the Heilongjiang Basin becomes imperative. This study employed deep learning to classify crop status in 2023 in the Heilongjiang Basin using Sentinel-2 satellite remote sensing images at a 10 m resolution. Various vegetation indices, including the Normalized Difference Vegetation Index (NDVI), the Normalized Difference Water Index (NDWI), the Enhanced Vegetation Index (EVI), the Modified Soil Adjusted Vegetation Index (MSAVI), and others, were computed and analyzed for different crops. The Google Earth Engine (GEE) platform was utilized for validation point sampling based on plot objects. The random forest (RF) classification method was successfully employed to classify and identify major crops in the study area (wheat, maize, rice, and soybean), as well as wetlands, tree cover, grassland, water, and constructed land, with an overall classification accuracy of 86%. Tree cover dominated the land cover, constituting 62%, while wheat, maize, rice, and soybeans accounted for 7% of the total area. Of these, soybeans occupied the largest area (57,646.60 hectares), followed by rice (53,209.53 hectares), maize (39,998.37 hectares), and wheat (8782.31 hectares). This study demonstrated that sample selection based on plot objects facilitates efficient sample labeling, providing insights into crop classification in other, potentially larger, areas. This method simultaneously distinguishes wetland, cultivated land, and forest features, supporting further integrated investigations for more natural resources.