Previous article Next article Further Developments and Applications of the Statistical Theory of ShapeDavid G. KendallDavid G. Kendallhttps://doi.org/10.1137/1131055PDFBibTexSections ToolsAdd to favoritesExport CitationTrack CitationsEmail SectionsAbout[1] R. V. Ambartzumian, B. Ranneby, Random shapes by factorization, Statistics in Theory and Practice, New York: Umeå, 1982 0575.60009 Google Scholar[2] F. L. Bookstein, Size and shape spaces for landmark data in two dimensions, Statist. Science, 1 (1986), 181–242 0614.62144 CrossrefGoogle Scholar[3] F. O. Bower, Size and Form in Plants, Macmillian, London, 1930 Google Scholar[4] S. V. M. Clube and , A. S. Trew, Observational results on quasar alignments in five fields, Quasars and Gravitational Lenses, 24th Liège Astrophys. Coll., 1983, 374–377 Google Scholar[5] M. G. Edmunds and , G. H. George, On the statistics of quasar alignments, Mon. Not. R. Astr. Soc., 213 (1985), 905–915 CrossrefGoogle Scholar[6] D. G. Kendall, The diffusion of shape, Adv. Appl. Probab., 9 (1977), 428–430 CrossrefGoogle Scholar[7] David G. Kendall, Shape manifolds, Procrustean metrics, and complex projective spaces, Bull. London Math. Soc., 16 (1984), 81–121 86g:52010 0579.62100 CrossrefGoogle Scholar[8] D. G. Kendall, Exact distributions for shapes of random triangles in convex sets, Adv. in Appl. Probab., 17 (1985), 308–329 86m:60033 0566.60007 CrossrefGoogle Scholar[9] David G. Kendall and , Wilfrid S. Kendall, Alignments in two-dimensional random sets of points, Adv. in Appl. Probab., 12 (1980), 380–424 81d:60014 0425.60009 CrossrefGoogle Scholar[10] David G. Kendall and , Hui-Lin Le, Exact shape-densities for random triangles in convex polygons, Adv. in Appl. Probab., (1986), 59–72 88h:60022 0607.60009 Google Scholar[11] W. G. McGinley and , R. Sibson, Dissociated random variables, Math. Proc. Cambridge Philos. Soc., 77 (1975), 185–188 51:6940 0353.60018 CrossrefGoogle Scholar[12] B. W. Silvermann and , T. C. Brown, Short distances, flat triangles and Poisson limits, J. Appl. Probab., 15 (1978), 815–825 80c:60042 0396.60029 CrossrefGoogle Scholar[13] C. G. Small, Ph.D. Thesis, Distributions of shape, and maximal invariant statistics, University of Cambridge, 1981 Google Scholar[14] C. G. Small, Random uniform triangles and the alignment problem, Math. Proc. Cambridge Philos. Soc., 91 (1982), 315–322 83b:62033 0482.60014 CrossrefGoogle Scholar[15] D'Arcy W. Thompson, On Growth and Form, Cambridge University Press, 1917 CrossrefGoogle Scholar[16] Peter Wakeman, Plane polygons and a conjecture of Blaschke's, Adv. in Appl. Probab., 17 (1985), 774–793, (See also C. L. Mallows and J. M. C. Clarke, ibid., 7 (1970), pp. 240–244.) 87d:52008 CrossrefGoogle Scholar Previous article Next article FiguresRelatedReferencesCited byDetails Exploring Errors in Reading a Visualization via Eye Tracking Models Using Stochastic Geometry14 June 2019 Cross Ref Face verification through tracking facial features1 December 2001 | Journal of the Optical Society of America A, Vol. 18, No. 12 Cross Ref Volume 31, Issue 3| 1987Theory of Probability & Its Applications History Submitted:08 April 1986Published online:28 July 2006 InformationCopyright © 1987 © Society for Industrial and Applied MathematicsPDF Download Article & Publication DataArticle DOI:10.1137/1131055Article page range:pp. 407-412ISSN (print):0040-585XISSN (online):1095-7219Publisher:Society for Industrial and Applied Mathematics
Read full abstract