The life cycles of many products including textiles contain chemicals for which process flow data are not known or are too time consuming to collect. Although each chemical may not contribute significantly to the LCA results of the product, which might justify excluding them, but together their contribution could be significant. Similarly, rough estimates of the process flows for the production of a single chemical may be very uncertain and considered meaningless, while the estimates of the cumulative data of process flows for several chemicals may be less uncertain and be a meaningful contribution to the quality of the LCA results. There are methods for estimation of process flows for different types of products, with varying demands regarding input data and time and with varying accuracy of the results. This work contributes to the available methods, focusing on simple estimations for production of chemical substances. The goal was to create a fast method for estimation of emissions, resource and energy flows (process flows) for the production of chemicals, based on easily available data on the properties of the chemicals. The process flows investigated were limited to those normally associated with process industries and contributing most to depletion of resources, to global warming, acidification, eutrophication and photochemical ozone production, i.e. use of energy, crude oil, coal, natural gas, uranium in ore and emissions of CO2, SOx, NOx, NMVOC, methane, BOD, COD and total N. Toxic substances were excluded, since toxic emissions are substance specific and cannot be included in a generalization. Available data for the process flows for the production of chemicals of mainly fossil origin were correlated to properties of chemicals such as amount of carbon in the molecule, heat of formation and average number of chemical reaction steps in the production. The production procedures were found in readily available literature. Up to about six reaction steps were evaluated in the correlation study. The variations in the process flows among the chemicals studied were calculated. There were weak correlations between average number of chemical reaction steps in the production and energy use, COD measured in water emissions, and SOx and NOx emissions to air. For the remaining properties of chemicals and process flows, there were only weak correlations for share of double bonding in the molecule if only molecules containing double bondings were included. The precision in estimation of the process flows increases non-significantly when adding information on the number of reaction steps or share of double bonding for chemicals containing double bonding is added. It seems reasonable to start with a simple grouping method to estimate the process flows for the production of a chemical of fossil origin. Further investigations might investigate whether there is a correlation between process flows and the costs of chemicals, and further study the correlations between process flows and share of double bonding for chemicals containing double bondings.
Read full abstract