Multiple sequence alignment (MSA) is the heart of comparative sequence analysis. Recent studies demonstrate that MSA algorithms can produce different outcomes when analyzing genomes, including phylogenetic tree inference and the detection of adaptive evolution. These studies also suggest that the difference between MSA algorithms is of a similar order to the uncertainty within an algorithm and suggest integrating across this uncertainty. In this study, we examine further the problem of disagreements between MSA algorithms and how they affect downstream analyses. We also investigate whether integrating across alignment uncertainty affects downstream analyses. We address these questions by analyzing 200 chordate gene families, with properties reflecting those used in large-scale genomic analyses. We find that newly developed distance metrics reveal two significantly different classes of MSA methods (MSAMs). The similarity-based class includes progressive aligners and consistency aligners, representing many methodological innovations for sequence alignment, whereas the evolution-based class includes phylogenetically aware alignment and statistical alignment. We proceed to show that the class of an MSAM has a substantial impact on downstream analyses. For phylogenetic inference, tree estimates and their branch lengths appear highly dependent on the class of aligner used. The number of families, and the sites within those families, inferred to have undergone adaptive evolution depend on the class of aligner used. Similarity-based aligners tend to identify more adaptive evolution. We also develop and test methods for incorporating MSA uncertainty when detecting adaptive evolution but find that although accounting for MSA uncertainty does affect downstream analyses, it appears less important than the class of aligner chosen. Our results demonstrate the critical role that MSA methodology has on downstream analysis, highlighting that the class of aligner chosen in an analysis has a demonstrable effect on its outcome.