A single Raman spectrum reflects limited molecular information. Effective fusion of the Raman spectra of serum and urine source domains helps to obtain richer feature information. However, most of the current studies on immunoglobulin A nephropathy (IgAN) based on Raman spectroscopy are based on small sample data and low signal-to-noise ratio. If a multi-source data fusion strategy is directly adopted, it may even reduce the accuracy of disease diagnosis. To this end, this paper proposes a data enhancement and spectral optimization method based on variational autoencoders to obtain reconstructed Raman spectra with doubled sample size and improved signal-to-noise ratio. In the diagnosis of IgAN in multi-source domain Raman spectra, this paper builds a global and local feature decoupled variational autoencoder (DMSGL-VAE) model based on multi-source data. First, the statistical features after spectral segmentation are extracted, and the latent variables obtained by the variational encoder are decoupled through the decoupling module. The global representation and local representation obtained represent the global shared information and local unique information of the serum and urine source domains, respectively. Then, the cross-source reconstruction loss and decoupling loss are used to constrain the decoupling, and the effectiveness of the decoupling is proved quantitatively and qualitatively. Finally, the features of different source domains were integrated to diagnose IgAN, and the results were analyzed for important features using the SHapley Additive exPlanations algorithm. The experimental results showed that the AUC value of the DMSGL-VAE model for diagnosing IgAN on the test set was as high as 0.9958. The SHAP algorithm was used to further prove that proteins, hydroxybutyrate, and guanine are likely to be common biological fingerprint substances for the diagnosis of IgAN by serum and urine Raman spectroscopy. In summary, the DMSGL-VAE model designed based on Raman spectroscopy in this paper can achieve rapid, non-invasive, and accurate screening of IgAN in terms of classification performance. And interpretable analysis may help doctors further understand IgAN and make more efficient diagnostic measures in the future.
Read full abstract