While vacation processes are considered to be ordinary behavior for servers, the study of queueing networks with server vacations is limited, interesting, and challenging. In this paper, we provide a unified and effective method of functional analysis for the study of a supermarket model with server multiple vacations. Firstly, we analyze a supermarket model of N identical servers with server multiple vacations, and set up an infinite-dimensional system of differential (or mean-field) equations, which is satisfied by the expected fraction vector, in terms of a technique of tailed equations. Secondly, as N??? we use the operator semigroup to provide a mean-field limit for the sequence of Markov processes, which asymptotically approaches a single trajectory identified by the unique and global solution to the infinite-dimensional system of limiting differential equations. Thirdly, we provide an effective algorithm for computing the fixed point of the infinite-dimensional system of limiting differential equations, and use the fixed point to give performance analysis of this supermarket model, including the mean of stationary queue length in any server and the expected sojourn time that any arriving customer spends in this system. Finally, we use some numerical examples to analyze how the performance measures depend on some crucial factors of this supermarket model. Note that the method of this paper will be useful and effective for performance analysis of complicated supermarket models with respect to resource management in practical areas such as computer networks, manufacturing systems and transportation networks.