ABSTRACT. The interaction of photoperiod and temperature in the regulation of the induction and termination of the larval diapause of the Southwestern corn borer, Diatraea grandiosella Dyar (Lepidoptera), was examined. A population originating from south‐eastern Missouri had critical daylengths for diapause induction of about 15h 5min (ecological threshold) and llh (physiological threshold). The ecological threshold was more stable than was the physiological threshold at temperatures lower than 25°C. Above 25°C the diapause response was suppressed. The insect appears to measure photoperiods in a stationary manner since a stepwise increase or decrease in photoperiod did not affect the incidence of diapause. In the critical region of the photoperiodic response curve, a higher incidence of diapause was found among females than among males. Females entered diapause later than did males, but resumed active development earlier than males. The rate of diapause development was more temperature dependent than was the rate of diapause induction, yet it was also clearly under photoperiodic control. The temperature coefficient (Q10) for this process was about 4. Several other factors including sex‐linkage, age, and geographic adaptations are involved in controlling the rate of diapause development, even more so than they are in controlling diapause induction. In the laboratory, the intensity of diapause declined gradually without larvae being exposed to non‐diapause inducing conditions. Incubation of field‐collected larvae revealed that their sensitivity to diapause maintaining photoperiods had ended by January. Three generations of selection of a Mississippi population of D. grandiosella at 30°C and LD 12:12 led to the production of an essentially diapause‐free strain and a diapause strain.
Read full abstract