Nowadays with the evolution of Internet of Things (IoT), building a network of sensors for measuring data from remote locations requires a good plan considering a lot of parameters including power consumption. A Lot of communication technologies such as WIFI, Bluetooth, Zigbee, Lora, Sigfox, and GSM/GPRS are being used based on the application and this application will have some requirements such as communication range, power consumption, and detail about data to be transmitted. In some places, especially the hilly area like Rwanda and where GSM connectivity is already covered, GSM/GPRS may be the best choice for IoT applications. Energy consumption is a big challenge in sensor nodes which are specially supplied by batteries as the lifetime of the node and network depends on the state of charge of the battery. In this paper, we are focusing on static sensor nodes communicating using the GPRS protocol. We acquired current consumption for the sensor node in different locations with their corresponding received signal quality and we tried to experimentally find a mathematical data-driven model for estimating the GSM/GPRS sensor node battery lifetime using the received signal strength indicator (RSSI). This research outcome will help to predict GPRS sensor node life, replacement intervals, and dynamic handover which will in turn provide uninterrupted data service. This model can be deployed in various remote WSN and IoT based applications like forests, volcano, etc. Our research has shown convincing results like when there is a reduction of −30 dBm in RSSI, the current consumption of the radio unit of the node will double.
Read full abstract