Neutrophil extracellular traps (NETs) were detected in blood samples and in cellular deposits of oxygenator membranes during extracorporeal membrane oxygenation (ECMO) therapy and may be responsible for thrombogenesis. The aim was to evaluate the effect of the base material of gas fiber (GF, polymethylpentene) and heat exchange (HE) membranes and different antithrombogenic coatings on isolated granulocytes from healthy volunteers under static culture conditions. Contact of granulocytes with membranes from different ECMO oxygenators (with different surface coatings) and uncoated-GFs allowed detection of adherent cells and NETotic nuclear structures (normal, swollen, ruptured) using nuclear staining. Flow cytometry was used to identify cell activation (CD11b/CD62L, oxidative burst) of non-adherent cells. Uncoated-GFs were used as a reference. Within 3h, granulocytes adhered to the same extent on all surfaces. In contrast, the ratio of normal to NETotic cells was significantly higher for uncoated-GFs (56-83%) compared to all coated GFs (34-72%) (p < 0.001) with no difference between the coatings. After material contact, non-adherent cells remained vital with unchanged oxidative burst function and the proportion of activated cells remained low. The expression of activation markers was independent of the origin of the GF material. In conclusion, the polymethylpentene surfaces of the GFs already induce NET formation. Antithrombogenic coatings can already reduce the proportion of NETotic nuclei. However, it cannot be ruled out that NET formation can induce thrombotic events. Therefore, new surfaces or coatings are required for future ECMO systems and long-term implantable artificial lungs.
Read full abstract