Purpose. Determination of the relationships between the concentrations of Zn, Cu, Pb, Cd in the atmospheric air and in the assimilative organs of the false acacia (Robinia pseudoacacia) trees the most common species in the system of landscaping of industrial cities. The objectives of the study included finding out the peculiarities of the spatial distribution of metal pollutants in green spaces of Robinia pseudoacacia in Dnipro city. Methodology. The study was conducted in the system of green spaces of the industrial city of Dnipro, in the atmospheric air of which pollutants dominate, whose source is emissions from metallurgy, energy and motor transport. To carry out the experiment, the method of atomic absorption spectrophotometry was used to determine the concentrations of heavy metals. The trend of technogenic emissions into the atmosphere was estimated by statistical methods. The spatial distribution of accumulation of essential and toxic metals in the Robinia plantations of the industrial city was built on the basis of the obtained experimental data. Findings. Among the studied pollutants, the maximum concentration in the assimilation organs was found for Zn, whose range was 1530 mgkg-1. Almost the same level of accumulation was reached for Cu and for Pb: 3.917.2 and 8.610.8 mgkg-1, respectively. The presence of Cd, which is not an essential element, has been established, which allows considering Robinia plantations as a potential depositor of Cu and Cd in conditions of polyelemental pollution of industrial cities. Originality. It was established that Robinia plantations as an element of the green infrastructure of industrial cities are characterized by the maximum effect of Cu (among other heavy metals) translocation and are effective potential depositors of Pb when its normative values in the atmospheric air are exceeded.. Practical value. On the basis of the obtained experimental data, the spatial distribution of accumulation of metals as pollutants in Robinia plantations was constructed, which can be considered in the plane of optimization of the state of atmospheric air in the city. The cartographic materials that can be used by the subjects of environmental monitoring and green construction of industrial cities were obtained.