Despite the superiority of symbolic approaches over the purely numerical approaches in many aspects, it does not receive the proper attention due to its significant complexity, high resources requirement and long drawn time which even grows significantly with the increase of model dimensions. However, its merits deserve every attempt to overcome the difficulties being faced. In this paper, a fully generic symbolic-based technique is proposed to deal with complex state space control problems. In this technique, depending on the model dimension if exceeds a predefined limit, the state space is solved using the partitioned matrices theory and block wise inversion formula. Experimental results demonstrate that the proposed technique overcomes all the previously mentioned barriers and gives the same results when compared to numerical methods (Simulink). Moreover, it can be used to gain useful information about the system itself, provides an indication of which parameters are more important and reveals the sensitivity of system model to single parameter variations.
Read full abstract