We present a novel integrated analytical framework for analyzing the quality-of-service (QoS) performance measures in a wireless mobile multimedia network. The framework integrates physical, radio link, and network layer parameters and protocols to analyze the call-level and packet-level performances. In the network layer, call admission control (CAC) is responsible for deciding whether an incoming call can be accepted or not so that the performances of the ongoing calls do not deteriorate below the acceptable level. Also, an adaptive channel allocation (ACA) scheme is used to maximize the utilization of the radio resources. In the data link layer, queue management and error control are used for non-real-time loss-sensitive traffic. In the physical layer, a finite state Markov channel (FSMC) is used to model channel fading, and adaptive modulation is used for rate adaptation according to channel quality. Various call-level and packet-level QoS measures for real-time, non-real-time, and best-effort traffic are obtained. The analytical results are validated by extensive simulations. Examples of the applications of the presented analytical framework are also provided
Read full abstract