Low-aspect-ratio reinforced concrete (RC) shear walls have been commonly used in several nuclear facilities in containment and safety-related structures. Despite being a potential alternative to reduce rebar congestion and subsequently minimize complex construction activities typically associated with nuclear facilities, there has been limited experimental research on investigating the impact of using high-strength reinforcement (HSR) on the seismic performance of such walls, particularly in a multi-storey context. This lack of research is mainly due to considerable challenges imposed when testing such multi-storey nuclear RC shear walls in most laboratories. Therefore, the current study presents the experimental results of two two-storey low-aspect-ratio nuclear RC shear walls that were tested utilizing the seismic hybrid simulation testing technique. In this respect, walls W1-NSR and W2-HSR were designed using normal-strength reinforcement (NSR) and HSR, respectively, where the two test walls had comparable capacities to allow for direct comparisons. Both walls were subjected to various ground motion levels, spanning from operational to design and beyond-design earthquake scenarios. The experimental findings are then presented to include the force-displacement responses, the multi-storey effects, ductility capacities, lateral and rotational stiffnesses, rebar strains, and cracking patterns of the test walls. Subsequently, an economic assessment was carried out to quantify the total rebar weights and the corresponding construction costs of such walls. In addition, the expected seismic repair costs were determined based on a three-dimensional digital image correlation technique that provided information on the damage states of the test walls under different earthquake levels. The results show that although W1-NSR and W2-HSR attained similar force and moment capacities, W2-HSR achieved a relatively higher ductility capacity than W1-NSR. However, larger cracks were observed in W2-HSR compared to W1-NSR, which was attributed to the associated larger rebar spacing in the former relative to the latter. The economic assessment results demonstrate that using HSR minimized the rebar weights and construction costs, while both walls had similar seismic repair costs at their design and beyond-design earthquake levels. Both the seismic performance and economic assessment results presented in the current study are expected to aid future editions of relevant design standards in adopting HSR in nuclear construction practice.