The paper deals with approximations of periodic functions that play a significant role in harmonic analysis. The approach revisits the trigonometric polynomials, seen as combinations of functions, and proposes to extend the class of models of the combined functions to a wider class of functions. The key here is to use structured functions, that have low complexity, with suitable functional representation and adapted parametrizations for the approximation. Such representation enables to approximate multivariate functions with few eventually random samples. The new parametrization is determined automatically with a greedy procedure, and a low rank format is used for the approximation associated with each new parametrization. A supervised learning algorithm is used for the approximation of a function of multiple random variables in tree-based tensor format, here the particular Tensor Train format. Adaptive strategies using statistical error estimates are proposed for the selection of the underlying tensor bases and the ranks for the Tensor-Train format. The method is applied for the estimation of the wall pressure for a flow over a cylinder for a range of low to medium Reynolds numbers for which we observe two flow regimes: a laminar flow with periodic vortex shedding and a laminar boundary layer with a turbulent wake (sub-critic regime). The automatic re-parametrization enables here to take into account the specific periodic feature of the pressure.