STAT3, an oncogene drives tumor growth and is associated with poor prognosis. However, small molecule-based STAT3 inhibitors were unsuccessful in clinics. Recently, STAT3 degraders that ubiquitinate STAT3 were found to elicit long-lasting anti-tumor responses. Thus, triggering STAT3 ubiquitination in cancers is a better strategy than STAT3 inhibition. However, not much is known about the identity of E3-ligases that ubiquitinate STAT3 in cancers. Therefore, to design better therapies to degrade STAT3, we sought to identify E3-ligases that ubiquitinate STAT3 in cancer cells. To answer this question, we determined the cell cycle-dependent ubiquitination of STAT3 in HEK293T cells and examined the link between STAT3 dephosphorylation and ubiquitination. We found that STAT3 is more strongly ubiquitinated in mitosis than in other phases of the cell cycle. We observed that APC/C CDH1 binds and ubiquitinates STAT3 in mitosis. Further, we also found that inhibiting phosphatases decreases STAT3 ubiquitination. We conclude that APC/C CDH1 ubiquitinates STAT3 in mitosis. We suggest that mitosis can be a potential therapeutic window for treating STAT3-activated cancers.