<sec>The large electric dipole moment of the Rydberg atom allows for strong coupling with weak electric fields, and is widely used in electric field measurements because of its reproducibility, precision and stability. The combination of Rydberg atoms and electromagnetically induced transparency (EIT) technology has been used for detecting and characterizing radio-frequency (RF) electric fields. </sec><sec>In this work, by selecting probe light (852 nm), dressed light (1470 nm), and coupled light (780 nm), the Rydberg state (49<i>P</i><sub>3/2</sub>) of Cs atom is prepared by using a three-photon excitation scheme through using all-infrared light excitation of Rydberg atoms. We experimentally observe the EIT spectra of the Rydberg states decorated by radio-frequency electric fields, which optically detects Rydberg atoms. The effect of the amplitude and frequency of the RF electric field on the spectrum is explored in light of changes in the EIT spectrum. The results show that in the region of weak electric field, only the ac Stark energy shift and spectral broadening occur. As the electric field is further enhanced, the sideband phenomenon occurs in both the primary peak and secondary peak of the EIT. In the region of strong field, the Rydberg energy level produces a series of Floquet states with higher-order terms, as well as state shifting and mixing, resulting in asymmetry in the spectra of the EIT sideband peaks. The effect of frequency on the shielding effect of the Cs vapor cell is further discussed based on the shift of the main peak of the EIT.</sec><sec>The demodulation of the electric field in a range of 50 Hz–1 kHz with a fidelity of 95% is achieved by modulating the low-frequency electric field to the RF electric field. The results can provide valuable references for spectral detection and traceable measurements of low-frequency electric fields.</sec>
Read full abstract