view Abstract Citations (283) References (31) Co-Reads Similar Papers Volume Content Graphics Metrics Export Citation NASA/ADS Ionized Gas in the Halos of Edge-on Starburst Galaxies: Evidence for Supernova-driven Superwinds Lehnert, Matthew D. ; Heckman, Timothy M. Abstract Supernova-driven galactic winds ("superwinds") have been invoked to explain many aspects of galaxy formation and evolution. Such winds should arise when the supernova rate is high enough to create a cavity of very hot shock-heated gas within a galaxy. This gas can then expand outward as a high-speed wind that can accelerate and heat ambient interstellar or circum-galactic gas causing it to emit optical line radiation and/or thermal X-rays. Theory suggests that such winds should be common in starburst galaxies and that the nature of the winds should depend on the star formation rate and distribution. In order to systematize our observational understanding of superwinds (determine their incidence rate and the dependence of their properties on the star formation that drives them) and to make quantitative comparisons with the theory of superwinds, we have analyzed data from an optical spectroscopic and narrow-band imaging survey of an infrared flux-limited (S_60 microns_ >= 5.4 Jy) sample of about 50 IR-warm (S_60 microns_/S_100 microns_ > 0.4), starburst galaxies whose stellar disks are viewed nearly edge-on (b/a ~> 2). This sample contains galaxies with infrared luminosities from ~10^10^-10^12^ L_sun_ and allows us to determine the properties of superwinds over a wide range of star formation rates. We have found that extraplanar emission-line gas is a very common feature of these edge-on, IR-bright galaxies and the properties of the extended emission-line gas are qualitatively and quantitatively consistent with the superwind theory. We can summarize these properties as morphological, ionization, dynamical, and physical. 1. Morphological properties.-Extraplanar filamentary and shell-like emission-line morphologies on scales of hundreds of parsecs to 10 kpc are common, there is a general "excess" of line emission along the minor axis, the minor axis emission-line "excess" correlates with "IR activity," and the minor axis emission-line "excess" also correlates with the relative compactness of the Hα emission. 2. Ionization properties.-Line ratios become more "shocklike" (high ratios of [N II] λ6583/Hα, [S II] λλ6716, 6731/Hα, and [O I] λ6300/Hα) at more extreme IR properties, the most "shocklike" line ratios occur far out along the minor axis, "shocklike" line ratios corresponds to broad emission lines, and the most extreme line ratios correspond to the most extreme IR properties, especially for the emission-line gas farthest out along the minor axis. 3. Dynamical properties.-Lines are broader along the minor axis than along the major axis, line widths correlate with the "IR activity," line widths correlate with line ratios, line widths do not correlate with rotation speed, minor axis shear (a measure of the systematic velocity change along the minor axis) correlates with "IR activity," minor axis shear correlates with axial ratio and implies that a face-on galaxy would have an outflow/inflow speed of 170_-80_^+150^ km s^-1^, and the starbursts show statistically blueward line profile asymmetries. 4. Physical properties.-Pressures in the nuclei of these galaxies are 3 orders of magnitude higher than the ambient pressure in the interstellar medium of our galaxy, and the pressure falls systematically with radius. While none of these results are in themselves proof of the superwind model, we believe that when the results are taken as a whole, the superwind hypothesis is very successful in explaining what we have observed. In addition, these results have implications for galaxy evolution and the nature of the intergalactic medium. Those galaxies with the best evidence for driving superwinds are those with large IR luminosities (L_IR_ ~> 10^44^ ergs s^-1^), large IR excesses (L_IR_/L_OPT_ ~> 2), and warm far-IR colors (S_60 microns_/S_100 microns_ ~> 0.5). Integrating over the local far-IR luminosity function for galaxies meeting the above criteria, multiplying by the age of the universe, and then dividing by the local space density of galaxies implies that superwinds have carried out ~5 x 10^8^ M_sun_ in metals and 10^59^ ergs in kinetic plus thermal energy per average (Schecter L^*^) galaxy over the history of the universe. We note that these two quantities are approximately equal to the mass of metals contained inside an average galaxy and the gravitational binding energy of an average galaxy, respectively. Even with the conservative assumptions of this calculation (we have neglected that star formation rates were presumably higher in the early universe), it is obvious that superwinds may have a major impact on the evolution of individual galaxies and the intergalactic medium by injecting mass, metals, and kinetic energy into the galactic halo and potentially the intergalactic medium. Publication: The Astrophysical Journal Pub Date: May 1996 DOI: 10.1086/177180 Bibcode: 1996ApJ...462..651L Keywords: GALAXIES: HALOS; GALAXIES: STARBURST; GALAXIES: ISM; INFRARED: GALAXIES; SHOCK WAVES; STARS: SUPERNOVAE: GENERAL full text sources ADS | data products SIMBAD (47) NED (46)