Superantigens produced by Staphylococcus aureus can cause food poisoning and toxic shock syndrome. The biological activities and vaccine potential of mutant staphylococcal enterotoxin B (SEB) proteins, N23K and F44S, were studied in a lipopolysaccharide-potentiated mouse model. Although 10 μg of SEB per mouse is equivalent to 30 LD 50, the same intraperitoneal dose of either mutant protein was nonlethal and did not elevate serum levels of tumor necrosis factors (TNF). N23K, F44S, and SEB were serologically identical in an enzyme-linked immunosorbent assay with polyclonal anti-SEB. Immunization with alum containing N23K, F44S, or SEB elicited an anti-SEB response that protected 80–87% of the mice against a 10 μg SEB challenge. Controls lacking an anti-SEB titer did not survive. Pooled sera from immunized mice effectively blocked SEB-induced T-cell proliferation in vitro. Naive mice survived a lethal SEB challenge when given pooled antisera 1, 2, or 4 h later, whereas the antisera failed to protect animals when administered 6 or 8 h after the toxin. Lethality at the later times was consistent with increased serum levels of TNF observed 6 h after SEB injection. These studies suggest that the N23K and F44S mutant proteins of SEB are less biologically active than the wild-type toxin, yet retain epitopes useful for eliciting a protective antibody response.
Read full abstract