Vector-borne diseases pose a major worldwide health concern, impacting more than 1 billion people globally. Among various blood-feeding arthropods, mosquitoes stand out as the primary carriers of diseases significant in both medical and veterinary fields. Hence, comprehending their distinct role fulfilled by different mosquito types is crucial for efficiently addressing and enhancing control measures against mosquito-transmitted diseases. The conventional method for identifying mosquito species is laborious and requires significant effort to learn. Classification is subsequently carried out by skilled laboratory personnel, rendering the process inherently time-intensive and restricting the task to entomology specialists. Therefore, integrating artificial intelligence with standard taxonomy, such as molecular techniques, is essential for accurate mosquito species identification. Advancement in novel tools with artificial intelligence has challenged the task of developing an automated system for sample collection and identification. This study aims to introduce a self-supervised Vision Transformer supporting an automatic model for classifying mosquitoes found across various regions of Thailand. The objective is to utilize self-distillation with unlabeled data (DINOv2) to develop models on a mobile phone-captured dataset containing 16 species of female mosquitoes, including those known for transmitting malaria and dengue. The DINOv2 model surpassed the ViT baseline model in precision and recall for all mosquito species. When compared on a species-specific level, utilizing the DINOv2 model resulted in reductions in false negatives and false positives, along with enhancements in precision and recall values, in contrast to the baseline model, across all mosquito species. Notably, at least 10 classes exhibited outstanding performance, achieving above precision and recall rates exceeding 90%. Remarkably, when applying cropping techniques to the dataset instead of utilizing the original photographs, there was a significant improvement in performance across all DINOv2 models studied. This is demonstrated by an increase in recall to 87.86%, precision to 91.71%, F1 score to 88.71%, and accuracy to 98.45%, respectively. Malaria mosquito species can be easily distinguished from another genus like Aedes, Mansonia, Armigeres, and Culex, respectively. While classifying malaria vector species presented challenges for the DINOv2 model, utilizing the cropped images enhanced precision by up to 96% for identifying one of the top three malaria vectors in Thailand, Anopheles minimus. A proficiently trained DINOv2 model, coupled with effective data management, can contribute to the development of a mobile phone application. Furthermore, this method shows promise in supporting field professionals who are not entomology experts in effectively addressing pathogens responsible for diseases transmitted by female mosquitoes.
Read full abstract