Although many studies focus on senescence mechanisms, few habitually consider age as a biological parameter. Considering the effect of interactions between food and age on metabolism, here we depict the lipid framework of 12 tissues isolated from Sprague-Dawley rats fed standard rodent chow over 1year, an age below which animals are commonly studied. The aim is to define relevant markers of lipid metabolism influenced by age in performing a fatty acid (FA) and dimethylacetal profile from total lipids. First, our results confirm impregnation of adipose and muscular tissues with medium-chain FA derived from maternal milk during early infancy. Secondly, when animals were switched to standard croquettes, tissues were remarkably enriched in n-6 FA and especially 18:2n-6. This impregnation over time was coupled with a decrease of the desaturation index and correlated with lower activities of hepatic Δ5- and Δ6-desaturases. In parallel, we emphasize the singular status of testis, where 22:5n-6, 24:4n-6, and 24:5n-6 were exceptionally accumulated with growth. Thirdly, 18:1n-7, usually found as a discrete FA, greatly accrued over the course of time, mostly in liver and coupled with Δ9-desaturase expression. Fourthly, skeletal muscle was characterized by a surprising enrichment of 22:6n-3 in adults, which tended to decline in older rats. Finally, plasmalogen-derived dimethylacetals were specifically abundant in brain, erythrocytes, lung, and heart. Most notably, a shift in the fatty aldehyde moiety was observed, especially in brain and erythrocytes, implying that red blood cell analysis could be a good indicator of brain plasmalogens.
Read full abstract