Accurately extrapolating survival beyond trial follow-up is essential in a health technology assessment where model choice often substantially impacts estimates of clinical and cost effectiveness. Evidence suggests standard parametric models often provide poor fits to long-term data from immuno-oncology trials. Palmer et al. developed an algorithm to aid the selection of more flexible survival models for these interventions. We assess the usability of the algorithm, identify areas for improvement and evaluate whether it effectively identifies models capable of accurate extrapolation. We applied the Palmer algorithm to the CheckMate-649 trial, which investigated nivolumab plus chemotherapy versus chemotherapy alone in patients with gastroesophageal adenocarcinoma. We evaluated the algorithm's performance by comparing survival estimates from identified models using the 12-month data cut to survival observed in the 48-month data cut. The Palmer algorithm offers a systematic procedure for model selection, encouraging detailed analyses and ensuring that crucial stages in the selection process are not overlooked. In our study, a range of models were identified as potentially appropriate for extrapolating survival, but only flexible parametric non-mixture cure models provided extrapolations that were plausible and accurately predicted subsequently observed survival. The algorithm could be improved with minor additions around the specification of hazard plots and setting out plausibility criteria. The Palmer algorithm provides a systematic framework for identifying suitable survival models, and for defining plausibility criteria for extrapolation validity. Using the algorithm ensures that model selection is based on explicit justification and evidence, which could reduce discordance in health technology appraisals.
Read full abstract