Computational protocols that successfully predict standard reduction potentials of N-heterocyclic compounds in dimethyl formamide and their standard oxidation potentials in acetonitrile were developed. Different solvation models were verified in conjunction with the MPWB1K/6-31 + G(d) level of density functional theory. For reduction potentials calculations, the PCM(UA0) and SMD(Bondi) models were used to compute solvation energies of neutral forms and anion-radical forms, respectively. For oxidation potential calculations, the best results were obtained by a combination of SMD(UAHF) and PCM(Bondi) models to compute solvation energies of neutral forms and cation-radical forms, respectively. The mean absolute deviations (MAD) and root mean square errors (RMSE) of the current theoretical models for reduction potentials were found to be 0.09 V and 0.10, respectively, and for oxidation potentials MAD = 0.12 V and RMSE = 0.16.
Read full abstract