Abstract In this article, we give explicit bounds on the Wasserstein and Kolmogorov distances between random variables lying in the first chaos of the Poisson space and the standard normal distribution, using the results of Last et al. (Prob. Theory Relat. Fields165, 2016). Relying on the theory developed by Saulis and Statulevicius in Limit Theorems for Large Deviations (Kluwer, 1991) and on a fine control of the cumulants of the first chaoses, we also derive moderate deviation principles, Bernstein-type concentration inequalities, and normal approximation bounds with Cramér correction terms for the same variables. The aforementioned results are then applied to Poisson shot noise processes and, in particular, to the generalized compound Hawkes point processes (a class of stochastic models, introduced in this paper, which generalizes classical Hawkes processes). This extends the recent results of Hillairet et al. (ALEA19, 2022) and Khabou et al. (J. Theoret. Prob.37, 2024) regarding the normal approximation and those of Zhu (Statist. Prob. Lett.83, 2013) for moderate deviations.
Read full abstract