Abstract

In the field of structural engineering, the exploration of steel fibre reinforced concrete (SFRC) beams has recently intensified, particularly due to their improved tension and shear performance of structure. This study pioneers a novel reliability analysis of shear capacity predictions for SFRC beams, distinctively classifying the datasets into high-strength (HSFRC) and normal-strength (NSFRC) categories. A comprehensive database of 142 HSFRC and 265 NSFRC beams serves as the foundation for this analysis, which critically examines the standard Gaussian distribution in shear design models and proposes the Lognormal and Weibull distributions as more precise alternatives. Employing advanced First-order (FORM) and Second-order Reliability Methods (SORM), the study covers a broad spectrum of load conditions, including dead, live, snow, wind, and seismic loads, to evaluate various empirical, semi-empirical and machine learning proposed shear capacity prediction formulas. One of the key innovations of this research is the development of differentiated resistance coefficients for various risk levels in the reliability analysis, allowing future structural designers to tailor their designs according to specific risk profiles. This approach significantly enhances the balance between economic efficiency and structural safety based on the evolution of different target reliability indexes. The study reveals that existing design equations for SFRC beams generally lean towards conservatism. This study found that formulas derived from machine learning exhibited superior prediction ability compared to traditional theoretically derived regression formulas. When compared the proposed machine learning formulas, the Tarawneh's formula demonstrated better prediction ability than the Kara's formula when applied to larger datasets. However, high predictive power does not necessarily equate to high reliability. Machine learning formulas prioritise predictive accuracy, often at the expense of insufficient redundancy for ensuring safety. Overall, it introduces Kara's formula for NSFRC beams, which stands out with its superior predictive performance, offering an optimal balance of safety and cost-efficiency. Ashour's formula is also identified as a more effective and safer option for HSFRC beams. Complementing these findings, the extensive sensitivity analysis of the collected data not only confirms the robustness of the conclusions but also prepares for the integration of broader datasets in the future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.