Aspergillus flavus is best known for producing the family of potent carcinogenic secondary metabolites known as aflatoxins. However, this opportunistic plant and animal pathogen also produces numerous other secondary metabolites, many of which have also been shown to be toxic. While about forty of these secondary metabolites have been identified from A. flavus cultures, analysis of the genome has predicted the existence of at least 56 secondary metabolite gene clusters. Many of these gene clusters are not expressed during growth of the fungus on standard laboratory media. This presents researchers with a major challenge of devising novel strategies to manipulate the fungus and its genome so as to activate secondary metabolite gene expression and allow identification of associated cluster metabolites. In this review, we discuss the genetic, biochemical and bioinformatic methods that are being used to identify previously uncharacterized secondary metabolite gene clusters and their associated metabolites. It is important to identify as many of these compounds as possible to determine their bioactivity with respect to fungal development, survival, virulence and especially with respect to any potential synergistic toxic effects with aflatoxin.
Read full abstract