Gelatine hydrogels can be prepared using different cross-linking methods, such as enzymatic, physical or chemical. Unfortunately, in the case of chemical cross-linking, the typically utilized synthetic cross-linkers are harmful to human health and the environment. Therefore, in accordance with the principles of green chemistry and sustainable development, we have obtained compounds for the chemical cross-linking of hydrogel polymers from the processing of spent coffee grounds. In this study, gelatin/κ-carrageenan hydrogels are cross-linked using a bio-cross-linking agent from spent coffee grounds. Their physicochemical and thermal properties are compared with those of standard physical gels. The chemical cross-linking was confirmed based on FT-IR spectra, which demonstrated the formation of new covalent bonds between the oxidized polyphenols included in the extract from the spent coffee grounds and the amide groups present in the gelatine structure. Significant differences were also observed in morphology (SEM images) and other physico-chemical characteristics (gel fraction, swelling ability, hardness). The chemically cross-linked hydrogels in comparison to physically ones are characterized by a better developed porous network, a slightly higher gel fraction (64.03 ± 4.52% as compared to 68.15 ± 0.77%), and a lower swelling ratio (3820 ± 45% as compared to 1773 ± 35%), while TGA results show that they have better thermal stability. The research confirmed the possibility of using the developed natural cross-linking agent in the process of obtaining hydrogel materials based on bio-polymers.