Modal analysis of the flux reconstruction (FR) formulation is performed to obtain the semi-discrete and fully-discrete dispersion relations, using which, the wave properties of physical as well as spurious modes are characterized. The effect of polynomial order, correction function and solution points on the dispersion, dissipation and relative energies of the modes are investigated. Using this framework, a new set of linearly stable high-order FR schemes is proposed that minimizes wave propagation errors for the range of resolvable wavenumbers. These schemes provide considerably reduced error for advection in comparison to the Discontinuous Galerkin scheme and benefit from having an explicit differential update. The corresponding resolving efficiencies compare favorably to those of standard high-order compact finite difference schemes. These theoretical expectations are verified by a comparison of proposed and existing FR schemes in advecting a scalar quantity on uniform as well as non-uniform grids.
Read full abstract