Air induction nozzle (AIN) has a special Venturi structure that has been widely used in the field of reducing the probability of drift of pesticide droplets and realizing precise application. The present research mainly adopts the method of comparative test and analyzes the difference between AIN and standard fan nozzle. However, the research on internal flow characteristics and air–liquid ratio (ALR) of AIN is very limited. In order to detect the air-liquid transient flow distribution and the influence of the geometric parameter structure of Venturi on the air–liquid ratio in the air induction nozzle, numerical simulation and air-liquid ratio prediction model of AIN combined with TD (Turbo Drop series) type Venturi tubes and ST110 (standard nozzle series) type fan nozzles are used. Based on the VOF (volume of fluid) model and Realizable k-ε turbulence control method, the TD-ST combined AIN is simulated numerically using open input and exit boundary conditions. The results show that the transient flow characteristic of the combined AIN is determined by the geometric structure of the Venturi tube, and the internal velocity and pressure change significantly at the Venturi angle. Under the same ST110 fan nozzle, the size of the larger TD Venturi tube will decrease the air phase content in the air–liquid flow. TD03-ST06 combined AIN has a maximum volume flow of 0.0092 (L/min) under 0.6 MPa. The air–liquid ratio regression model is established by designing the intake volume measurement system. According to this model, the influence law of tube size and spray parameters on the air–liquid ratio can be clarified. After variance analysis, it is proved that this model is suitable for air–liquid ratio prediction of TD-ST combined AIN. This study clarifies the air–liquid coupling law inside AIN and provides some reference for the quantitative analysis of the relationship between the geometric parameters, spray parameters, and the air–liquid ratio.
Read full abstract