Tech 101 Over the past decade, completion technology has evolved to allow the segmentation of horizontal wellbores into smaller compartments that can be individually stimulated. This concept of multiple stimulation treatments within the horizontal section of a well has made oil and gas wells in conventional and tight reservoirs more prolific and led to growth in completions equipment and horizontal fracturing services. Many service companies have expanded their product offerings to include pressure pumping or completions, services that have grown dramatically over the past decade. Trican had been considering expansion into completions for some time. The business case is obvious. Fracturing and completion tools are the foundations of modern well completion practices and having technology and expertise in both markets can equate to higher revenue and increased profit. Joining Trican in 2012, my direction was to establish a completion tool business that could be used either as a standalone product line or to work collaboratively on bundled services projects alongside Trican’s pressure pumping service lines. In establishing a completions business within Trican Well Service in 2012, we found ourselves searching for technology that was market ready, innovative, and designed with the industry trend in mind. The result was the acquisition of i-TEC Well Solutions in January 2013, which formed the nucleus of Trican Completion Solutions. Evolution of Completion Technology Completion methods have evolved significantly over the past 20 years. Wells were once mostly vertical comprised less than five producing zones, and required limited stimulation, which was usually performed separately from the installation of completion hardware. Drilling and completion operations in the field were separate and distinct undertakings on different rigs. Today, completions are largely horizontal with typically more than 15 producing intervals with stimulation (hydraulic fracturing) repeated for each zone. Drilling and completion phases have very blurry boundaries, and the bulk of the installation work is done with a drilling rig. Hydraulic fracturing is intensive in modern completions with tools designed around high flow rates, high pressures, and the need to survive sand-laden environments. Early on in the development of horizontal multistage completions, typically in more stable reservoirs, the horizontal section was left openhole and stimulation was done on drillpipe with straddle inflate assemblies. However, many reservoirs did not have the mechanical integrity and could not be left barefoot. As well, barefoot completions made production management virtually impossible. Cased-hole completions were the answer and original technologies were either plug-and-perf (PnP) or openhole completions using ball-activated sliding sleeves isolated between two packers. The advantages and drawbacks of each system (Table 1) created two schools of thought within the industry: cemented completions and openhole. The potential risks of adapting to a new technology in the midst of a field-development campaign are often too high to justify the potential cost savings, so many operators stick to the methods and technologies that work for them. In some regards, openhole completions have proven to be successful to capture initial production, but with limited options for restimulation, many are abandoned. For some operators, this “disposable well” concept may be good to obtain temporary increases in production, but the producers with a longer-term perspective of their assets want something that can be refractured and has the robust well architecture that cemented casing provides.
Read full abstract