PurposeTo ensure the reliable and safe operation of elevated-temperature pipes and equipment in the long term, it is essential to thoroughly assess the creep rupture life. Nevertheless, there is currently no design code that specifies a creep rupture life evaluation method for non-nuclear elevated-temperature equipment. The paper aims to discuss this issue.Design/methodology/approachAn analysis was conducted to compare the differences and conservativeness in calculating creep strain using three major codes (ASME-CC-2843, API-579 and BS-7910) based on the results of the 316H creep constitutive model and creep strain prediction. In addition, the creep resistances of 316H, 304H and 347H were compared. Subsequently, the ANSYS Usercreep subroutine was developed to compare the discrepancies between different codes under multiaxial stress conditions using numerical simulations.FindingsBS-7910 employs the Norton creep model with calculation parameters for the average creep strain rate, which is not applicable for the engineering design stage. ASME-CC2843 code primarily focuses on the primary and secondary creep stages, making it more suitable for non-nuclear pipeline and equipment design. For 316H, the creep strain curves predicted by ASME-CC2843 and API-579 typically intersect at a specific point. By combining the creep strain predicted by ASME-CC2843 and API-579, 347H exhibits superior predicted creep resistance compared to 316H, whereas 316H exhibited better predicted creep resistance than 304H.Originality/valueThis study provides a guide for future evaluation methods and material choices for non-nuclear equipment and pipelines operating at elevated temperatures.
Read full abstract