Rational use of natural resources and control over their recovery, as well as over destruction due to natural and technogenic causes, is currently one of the most urgent problems of the humanity. Forests are no exception. Multispectral images from Earth’s satellites are most often used for monitoring changes in forest planting. This is due to the fact that merging images taken in certain spectra makes it possible to recognize vegetation containing chlorophyll quite well. It also allows to detect changes in the level of chlorophyll, which shows the differences between healthy and damaged plants. Large areas of planted forests create the need to process huge amounts of data, which is difficult to do manually. One of the most important stages of image processing is the classification of objects in these images. This paper deals with various classification methods used to solve the problem of classifying images of remote sensing of the Earth. As a result, it was decided to evaluate the accuracy of classification methods on various vegetation indices. In the course of the study, the evaluation algorithm was determined, as well as one of the options for analyzing the results obtained. Conclusions were made about the work of classification methods on different vegetation indices.
Read full abstract