Nonalcoholic fatty liver disease (NAFLD) encompasses a spectrum of liver conditions, ranging from hepatic steatosis to steatohepatitis, fibrosis, and severe outcomes such as cirrhosis or cancer. The progression from hepatic steatosis to fibrosis involves significant extracellular matrix (ECM) remodeling, characterized by increased collagen deposition and cross-linking of ECM proteins, causing increased tissue stiffness and altered MMP expression patterns. Dysregulated MMP expression and extracellular acidosis are key contributors to NAFLD progression. Unlike other MMPs, which may be relevant only at specific disease stages, MMP-9 serves as a universal marker, allowing for monitoring of its expression in relation to disease states and ECM parameters. Understanding dysregulated MMP-9 expression across different NAFLD stages can provide crucial insights into disease progression and serve as both a diagnostic and a prognostic biomarker, identifying potential therapeutic targets. This study introduces a three-dimensional (3D) collagen/alginate-based liver disease model designed to investigate how matrix collagen content, elasticity, and diseased cell conditions influence MMP expression and pH levels in situ using nanoprobes. The platform offered an understanding of the relationships between these factors and their role in NAFLD progression, offering valuable insights into disease progression and potential resolution. To examine how various physicochemical and biological factors, particularly MMP expression and collagen deposition, drive NAFLD progression, three 3D NAFLD models were developed, simulating healthy (HL), steatotic (SL), and fibrotic (FL) liver matrices. Additionally, the role of collagenase treatment in the FL matrix in enhancing MMP expression and potentially mitigating fibrosis was also explored. By employing dual-sensitive fluorescent nanoprobes to monitor real-time in situ changes in MMP-9 expression and pH levels, this platform offers a novel approach to understanding the in vitro roles of matrix stiffness, collagen deposition, and diseased cell conditions in NAFLD pathogenesis.
Read full abstract