In this chapter, we envision the future of Quantitative Systems Pharmacology (QSP) which integrates closely with emerging data and technologies including advanced analytics, novel experimental technologies, and diverse and larger datasets. Machine learning (ML) and Artificial Intelligence (AI) will increasingly help QSP modelers to find, prepare, integrate, and exploit larger and diverse datasets, as well as build, parameterize, and simulate models. We picture QSP models being applied during all stages of drug discovery and development: During the discovery stages, QSP models predict the early human experience of in silico compounds created by generative AI. In preclinical development, QSP will integrate with non-animal "new approach methodologies" and reverse-translated datasets to improve understanding of and translation to the human patient. During clinical development, integration with complementary modeling approaches and multimodal patient data will create multidimensional digital twins and virtual populations for clinical trial simulations that guide clinical development and point to opportunities for precision medicine. QSP can evolve into this future by (1) pursuing high-impact applications enabled by novel experimental and quantitative technologies and data types; (2) integrating closely with analytical and computational advancements; and (3) increasing efficiencies through automation, standardization, and model reuse. In this vision, the QSP expert will play a critical role in designing strategies, evaluating data, staging and executing analyses, verifying, interpreting, and communicating findings, and ensuring the ethical, safe, and rational application of novel data types, technologies, and advanced analytics including AI/ML.
Read full abstract