S team systems are a ubiquitous element in nearly every type of manufacturing plant. In the United States, steam systems are the single largest consumer of energy in the industrial sector, where they account for 37% of annual onsite energy use. Steam use is particularly prominent in the chemicals, paper, petroleum refining, and food and beverage industries, where it is used in a wide range of processes, including reforming, distillation, concentration, cooking, and drying. Together, these four industries comprise nearly 90% of U.S. industrial steam demand, with chemicals manufacturing (30%) and paper manufacturing (30%) holding the largest shares. At the national level, industrial steam systems account for around 6% of U.S. total primary energy use, or 5,900 trillion British thermal units (TBtu). As such, much attention has been paid to steam system energy efficiency improvements as part of corporate, utility, and government energy and air pollution initiatives. Key incentives include local utility rebates, tax incentives, and lowor no-cost steam system energy efficiency audits. Steam system energy efficiency not only makes sense from an environmental perspective, but also from an economic perspective. As of 2006, U.S. manufacturers spent $21 billion on externally purchased boiler fuels. The actual price tag of industrial steam is likely much higher; nearly one-half of U.S. boiler fuels are self-generated within plants in the form of waste gas, black liquor, wood wastes, and other byproducts. These byproduct fuels are not free, as they are generated from purchased materials and typically require further processing for efficient combustion. Reducing demand for boiler fuels can, therefore, help reduce operating costs and improve profit margins. While clearly justified, the historical focus on reducing energy use has overlooked an increasingly compelling benefit of steam system efficiency: namely, reduced water use. Compared to the many public and private incentives for industrial energy efficiency, there are surprisingly few external incentives for industrial water efficiency. One key barrier to such incentives is the lack of credible data on industrial water use, which, unlike data on energy use, are not compiled at the manufacturing industry or process level in regular national surveys. This dearth of data contributes to a general lack of awareness of the sources and scale of industrial water use within the engineering and policy communities, which limits broader attention to water efficiency beyond the plant floor. Another barrier to steam system water efficiency is that the cost of boiler water—and the associated chemicals required for its treatment—typically only represents a small fraction of boiler operating costs, which are dominated by the costs of fuel. However, as we discuss in this Perspective, U.S. industrial steam systems consume copious amount of water. It follows that steam systems are worth a closer look as a manufacturing water efficiency target. Several current trends suggest that water efficiency will play an increasingly prominent role in the financial and sustainability plans of U.S. manufacturers. Recent water stress due to droughts and rising water infrastructure costs have led to increased public water rates around the country. These conditions may worsen with a changing climate. An increasing number of manufacturers are reporting water use as an important environmental indicator in annual corporate sustainability reports, which raises both public awareness of and accountability for water efficiency. Many manufacturers are also being asked by their corporate customers for environmental “footprint” data as part of large-scale sustainable Correspondence concerning this article should be addressed to E. Masanet at eric.masanet@northwestern.edu; M.E. Walker at mwalker9@hawk.iit.edu.