Abstract
Discrete constraint problems surface often in everyday life. Teachers might group students with complex considerations and hospital administrators need to produce staff rosters. Constraint programming (CP) provides techniques to efficiently find solutions. However, there remains a key challenge: these techniques are still largely inaccessible because expressing constraint problems requires sophisticated programming and logic skills. In this work we contribute a language and tool that leverage knowledge of how non-experts conceptualize problems to facilitate the expression of constraint models. Additionally, we report the results of a study surveying the advantages and remaining challenges towards making CP accessible to the wider public.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.