Abstract

Discrete constraint problems surface often in everyday life. Teachers might group students with complex considerations and hospital administrators need to produce staff rosters. Constraint programming (CP) provides techniques to efficiently find solutions. However, there remains a key challenge: these techniques are still largely inaccessible because expressing constraint problems requires sophisticated programming and logic skills. In this work we contribute a language and tool that leverage knowledge of how non-experts conceptualize problems to facilitate the expression of constraint models. Additionally, we report the results of a study surveying the advantages and remaining challenges towards making CP accessible to the wider public.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call