Sequence-specific triple-helix structures can be formed by parallel and antiparallel DNA clamps interacting with single-stranded DNA or RNA targets. Single-stranded nucleic acid molecules are known to adopt secondary structures that might interfere with intermolecular interactions. We demonstrate the correlation between a secondary structure involving the target--a stable stem predicted by in silico folding and experimentally confirmed by thermal stability and competition analyses--and an inhibitory effect on triplex formation. We overcame structural impediments by designing a new type of clamp: "tail-clamps". A combination of gel-shift, kinetic analysis, UV thermal melting and thermodynamic techniques was used to demonstrate that tail-clamps efficiently form triple helices with a structured target sequence. The performance of parallel and antiparallel tail-clamps was compared: antiparallel tail-clamps had higher binding efficiencies than parallel tail-clamps both with structured DNA and RNA targets. In addition, the reported triplex-stabilizing property of 8-aminopurine residues was confirmed for tail-clamps. Finally, we discuss the possible use of this improved triplex technology as a new tool for applications in molecular biology.