Soil quality and function in forest environments are influenced by the interaction of soil-forming parameters and silvicultural systems. Hyrcanian forests were recently accepted as a UNESCO World Heritage Site, which extends across an area of approximately 1.8 million hectares and ascend to an elevation of 2800 m above sea level (m.a.s.l). In these woodlands, Oriental Beech (Fagus orientalis Lipsky) is the predominant tree species and could be observed at 700–1500 m.a.s.l., and occur on different parent rocks. Shelterwood and single-tree selection techniques have been the primary management methods for beech forests for the past forty years. Studies investigating the impacts of silvicultural systems have not yet been done on soil and forest floor features on different bedrock geology and altitudes. Therefore, in this study, we examined the influence of single-tree selection and shelterwood methods, 25 years after employing those methods, on soil quality and function compared to control areas (intact forests) in Hyrcanian beech stands. For this purpose, 15 forest floor (30 × 30 cm) and topsoil (0–10 cm depth) samples in each silvicultural systems (i.e., single-tree selection and shelterwood methods and control zones) × 4 regions (including Rasht, Nowshahr, Sari and Gorgan) × 4 altitude levels (with averages of 800, 1000, 1200 and 1400 m.a.s.l.) were considered. According to our findings, the investigated forest regions, forest floor and soil characteristics across various locations spots could be separated by principal component analysis output, and more than 85% of the variance was explained by the first and second axes. The structural equation model showed that the region, altitude and silvicultural systems had an effective role in the changes in soil biological activities by influencing the forest floor, and the soil physicochemical features. Based upon the network model, the C/N ratio, the sand content, the soil aggregate stability, the available K, the fulvic acid, and the Acarina density were found to be prominent factors with regard to soil function. In the control sites, increased soil organic material fractions, microbial/enzyme and biota activities were detected, particularly at the lower altitudes of the Nowshahr site, which had geological formations of dolomite and calcic layers. Taken together, it seems that the single-tree method, commonly referred to as the close-to-nature technique produces more suitable conditions for soil functioning compared to the shelterwood management approach. Silvicultural systems, bedrock geology and altitude can have major detrimental effects on soil function and fertility, over the long-term, impacts may increase with harvest intensity.
Read full abstract